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A METHOD OF STUDYING THE EXCITATION OF STEADY HARMONIC OSCILLATIONS 
IN A COMPOSITE, WEDGE-LIKE REGION* 

A.A. LYAPIN and M.G. SELEZNEV 

An approach is described, enabling the stress-deformation state of a 
composite elastic wedge to be studied in the mode of steady harmonic 
oscillations, when oscillating stresses distributed in some region act on 
the edge of the wedge. The solution of the problem is constructed for 
every wedge in the form of a superposition of solutions of the problems 
for elastic half-spaces whose boundaries intersect at the required angle. 
The application of the proposed method is illustrated by solving a model 
problem of antiplane oscillations of a composite elastic wedge. some 
numerical results are given. The method makes it possible to use a unified 
approach to solving problems in a more general (two- and three-dimensional) 
formulation. 

1. Let us consider the boundary value problem of the theory of elasticity of the steady 
oscillations of a composite wedge under an antiplane load. Let the elastic medium occupy the 
following region in the Cartesian rectangular system of coordinates z,~,z 

-=<z<m (z,y)EB, (i=1,2) 
B,: (Y I; 0, 0 < t d Y tg B,iv 4: (Y 9 0, -Y tg PI d 2 < 0) 

The elastic properties of the medium in region D, are defined by the density p, and Lam& 
constants A,, pj. The motion of the points of the medium is described, in the case of harmonic 
antiplane oscillations of frequency o, by an equation of the form 

Jw, + eI'w, = 0; e,? = p,o'lpj 

(wj is the amplitude function of the displacement of the point of the medium in the region 
D,; W, (I, y, I) = IO] (2, Y) e--Lw’. I = 1, 2). 

The following oscillatory stresses are specified at the boundary of the region: 

.r = --Y tg B*, TLn = 1, (I/r) e-? y, = -y/cos fi2 

z = y tg B,, Tin = T1 (yx) e-i% y, = --y/cos fi, 
(1.1) 

2s the normal to the plane Z= --ytgpl or ~=ytgfi~). 
T;he conditions of rigid coupling are specified at the boundary separating the regions D, 

and D,, and the stress and deformation tensor components tned to zero at infinity. 
The solution of the problem of the oscillation of each wedge which is a part of the 

composite wedge, is constructed using the superposition principle, in the form of a sum of 
solutions to the problems of the steady oscillations of two half-spaces whose surfaces intersect 
at an angle fil or &. The boundary of each half-space is acted upon by, generally speaking, 
unknown, shear forces oriented along the E axis. 

Let us consider a wedge-like region formed by the intersection of two half-spaces. Let 
the following shear forces be given at the edges of the wedge: 

z = U, TAX = T, (y) ,-lw'; + = y tg &, TL~ = TX (yl)e-“‘)’ 

Using the superposition method we arrive at the following expression describing the 
amplitude function of displacement of a point of the medium: 

il 
IQ (X, 1') = ? 

2% s 
(rl+ 52) dz (1.2) 

0 

The contour a is determined by applying the principle of limit absorption, and has the 
following form /l/: it passes around the positive singularities of the integrand from below, 
and the negative ones from above, 
with dimensions of length. 

and the rest coincides with the real axis, and h is a constant 
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We find the functions Z,(Y), Z,(Y) from the solution of the following system of inteqra, 

equations: 

(z,,(a) are the Fourier transforms of Z,(y)). 

Substituting the quantities characterizing the region D, we determine, in the same manner, 

the displalement field in the second wedge with elastic parameters PZ? P-2. 
Thus, using the proposed method, we determine the wave field in a composite body in two 

stages. In the first stage we must solve the following system of integral equations: 

h-Z = T 
i! = co1 (Z,, ., Z,}, T = co1 (T,. 0. T,. 0) 

(1.4, 

for Z1(-Y),Zz (Yl, Z, (--Y), Z, (YI. 

of the tangential stresses T-.~ 
The system is obtained from the conditions of contact (equality 

and displacements on the common edge of the wedge) and the 
boundary conditions (1.1). In the second stage we determine the wave field in every wedge, 
substituting the function Zj into (1.2). 

We seek a solution of system (1 .4) in the space of summable functions, and this ensures 
the finiteness of the energy of elastic oscillations in any bounded volume of the medium. 

2. Let us inspect the behaviour of the functions Z, sought near the angle point. We do 
it in order to construct an effective numerical scheme for solving system (1.4)) taking into 

account the existence of a fixed singularity of the kernel of the integral operator of the 

system as Y--u and the presence of a singularity, near the wedge apex, of the sciutions of 

this system. 
Replacing the value of the kernels in il. 4) by their limiting values as the parameter 

a-m and retaining only the integral containing a singularity near the angle point, we apply 

to the system ~,z,= T obtained in this manner the Mellin /2/ transform in Y. 

As a result, the problem of finding Z,(Y.) is reduced to computing an integral of the form 

where 

Numerical 

equation -\i(~) = 

analysis Of the function (2.1) shows that there are no complex roots of the 
II within the strip ~0 (I~vs.,~ Fig.1 sho:is the dependence of the real roots So 

on the parameter fiPwhen fil = 2 :. i. = I,1 . Having determined the order of the singularity of the 

function Z,, we can construct an operator transforming the system (1.4) to a form suitable 

for numerical solution. We can use, as such an operator, one constructed earlier in the course 

of investigating the solutions of the system as 1 - ,, , namely 

When the operator hum’R acts on the system (1.4) from the left, we obtain, after a n.zber 

of transformations, the following system of functions X,= Z,(Y) Y"*, regular in the space cf 

surmnable functions, but without a singularity at the angle point: 

Y* = ma:.j, /.5*: 0 ( i, < ‘jz 

3. In what follows, we have used numerical methods to study the system. The Bubnov- 

Galerkin method /3/ was used to determine Z,(Y). Functions of the form Ip(p, Y)= exp (--pY) Lk (YI: 

0 < p < 1, Lk (I-, are Lagger polynomials, were used as the basic system. The resulting infinite 

system of linear algebraic equations forthe coefficients of the expansions in Lo was studied 

using the reduction method /3/. We have found that retention of six terms in the expansion 

was sufficient to obtain a solution with an error not exceeding 10%. Analysis of the practical 

convergence of the reduction method showed that the most effective region from the point of 
view of numerical computations, 1s the region with a wedge-like cross-section lying in the half- 

plane. The convergence suffers when the shear modulus p, of the half-space is greater than 

the shear modulus p1 of the wedge. Fig.2 shows the behaviour of the real and imaginary parts 

of the function Z, fcr P'I = ?.fuj, p2 = z.104, fi2 = &, with an error not exceeding 10%. 

4. In th e second stage of the proposed method of solving the boundary val,z? problem with 
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help of the solution of system (1.4), we determined the wave field in the medium. The numerical 

results obtained enabled us to estimate the wedge displacement field when the parameters (p,, 
&.~,F~,IL~) of the problem were varied. 

We used as the basis the problem with a "soft" wedge in the half-space. Fig.3 shows the 

behaviour of the amplitude function of the displacement on moving away from the wedge tip 
into the half-space, for various values of & (the solid, dash-dot, dash and dotted lines 
correspond to the values & ln = ll/ln, "ia, */,, *ia), pt = 2.105, p1 = 10J; X = Y. 

Fig.1 

Fig.2 Fig.3 

Fig.4 Fig.5 

Fig.4 shows the amplitude-frequency characteristics of the point of the medium with 
coordinates X = Y= Iv for fi,= n, pz = ~'4. p1 = 2.105, p2 = *OS. We see the correspondence between the 
behaviour of u:,@,) and the amplitude-frequency characteristic of the same point of the half- 
space without a wedge. There are, however, frequency ranges determining the local amplitude 
growth. The ranges correspond to the neighbourhood of the "resonance" frequencies of the 
sputtered wedge. For "h(Q) we have a displacement of the fundamental resonance frequency in 
the direction of lower frequencies, while the following frequencies are relatively stable. 

Fig.5 gives a comparison of the diagrams of the displacement field for the half-space 
with and without the "soft" wedge, then the readius R of the circumference of the diagram is 
varied. The dashed line corresponds to J?= 12. and the dash-dot line to fl= 20, while the solid 
line corresponds to the half-space without a wedge for R = ,211. In the region where the wedge 
is joined with the half-space, an oscillation is observed in the level of the modulus, as 
compared with a smoother pattern in the medium underneath the free surface. The shear wave 
propagating into the half-space has a lower intensity in the case of a region with a wedge. 
The energy redistribution caused by the wedge-like region is clearly seen. The increase in 
the rigidity pLg_is accompanied by a natural strengthening of the influence of the wedge on 
the distribution of the displacement field in the half-space. 
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THE SMATTERING MATRIX IN A WA~~GUI~E WITH ELASTIC WALLS* 

YU.A. LAVROV and V.D. LUK'YANOV 

The spectrum of normal waves is studied and the scattering matrix is 
determined fox a planar waveguide with elastic walls and with an elastic 
semi-infinite plate situated within it. The mechanical mode of behaviour 
of elastic plates is described using the general-type differential 
operators. Problems of this type belong to the class of the boundary 
contact problems /l, 2/. The unique solvability of these problems requires 
the formulation of additional boundary contact conditions describing the 
mechanical behaviour of the edge of the semi-infinite plate situated 
within the waveguide. The regularization of the integrals appearing when 
the general-type boundary contact conditions are satisfied is indicated. 

1. Formulation of the problem. We seek a solution of the following two-dimensional 
homogeneous Helmholtz equation: 

d2Pi0.G + @P':uy? + li?P c lj (l.lJ 
in the strip --m;~<~- =,hp<y <h, with a cut Y=O,.Z>O (see the figure), describing the 
distribution of the pressure P(z,y) when the system is excited by a given acoustic field PO(z,~). 
Here k= O/C is the wave number, o is the angular frequency; here and henceforth the dependence 

of the wave processes on time, chosen here inthe form erp(--iof], 
is neglected; c is the velocity of sound in the medium. 

i.e. of elastic plates, is described by the following ii___ 
The mechanical behaviour of the walls of the waveguide, 

boundasy conditions: 

___ _--_---I 

:1.31 
___ _---......-+...I 

----_------- 
‘7 

_____--s-w-- 

0 
fr&, ~)-(-l,j~,j(-~)~i~Z)(-_jj 

______--_-II A thin elastic plate is situated on the ray ~/=O,s>o 
_____------- 

and it executes antismtric oscillations described by the _____------- 
boundary conditions (z >O) 

Condition (1.3) describes the equality of the displacements of the upper (lower) surface 
of the plate u (z) = (pod)-la~ (s, -&-o)/ay, p0 is the fluid density. We note that condition (1.3) holds 
on the continuation of the plate median I= O,z<O, as well as the condition thattthe pressure 

is continuous 
P (t,-t- 0) = P (I, -0). 3 < 0 (1.5) 

Here M,j(-a*/az2), Mp;(-a*,a~2)(j= f,2,3) are polynomials whose coefficients depend on the 
mechanical properties of the elastic materials of which the waveguide walls are made. 

We illustrate all this by describing the form of the differential operators for different 
types of the waveguide walls: M,,= 1, &fsjs 0 (perfectly rigid walls) ; Mij= 0, Msj= i (perfectly 
pliable walls); Ml,= fltc%2-; K,=, MO1 = &d/Nj (elastic membranes) ; My. = @ia+ - x2', M*j = &dlD; 

(elastic, flexurally oscillating plates). Here III is the wave number of the waves within the 

membrane, Kj=p;lN,,pj is the linear density of the membrane (plate), Nj is the tensile force 
in the membrane, Xj is the wave number of the flexural waves in the plate situated in vacua, 
and x,= pjo~lDj,D, is the flexural rigidity of the plate. 
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